High-throughput dental biofilm growth analysis for multiparametric microenvironmental biochemical conditions using microfluidics.
نویسندگان
چکیده
Dental biofilm formation is not only a precursor to tooth decay, but also induces more serious systematic health problems such as cardiovascular disease and diabetes. Understanding the conditions promoting colonization and subsequent biofilm development involving complex bacteria coaggregation is particularly important. In this paper, we report a high-throughput microfluidic 'artificial teeth' device offering controls of multiple microenvironmental factors (e.g. nutrients, growth factors, dissolved gases, and seeded cell populations) for quantitative characteristics of long-term dental bacteria growth and biofilm development. This 'artificial teeth' device contains multiple (up to 128) incubation chambers to perform parallel cultivation and analyses (e.g. biofilm thickness, viable-dead cell ratio, and spatial distribution of multiple bacterial species) of bacteria samples under a matrix of different combinations of microenvironmental factors, further revealing possible developmental mechanisms of dental biofilms. Specifically, we applied the 'artificial teeth' to investigate the growth of two key dental bacteria, Streptococci species and Fusobacterium nucleatum, in the biofilm under different dissolved gas conditions and sucrose concentrations. Together, this high-throughput microfluidic platform can provide extended applications for general biofilm research, including screening of the biofilm properties developing under combinations of specified growth parameters such as seeding bacteria populations, growth medium compositions, medium flow rates and dissolved gas levels.
منابع مشابه
Dynamics analysis of microparticles in inertial microfluidics for biomedical applications
Inertial microfluidics-based devices have recently attracted much interest and attention due to their simple structure, high throughput, fast processing and low cost. They have been utilised in a wide range of applications in microtechnology, especially for sorting and separating microparticles. This novel class of microfluidics-based devices works based on intrinsic forces, which cause micropa...
متن کاملUse of a high-throughput in vitro microfluidic system to develop oral multi-species biofilms.
There are few high-throughput in vitro systems which facilitate the development of multi-species biofilms that contain numerous species commonly detected within in vivo oral biofilms. Furthermore, a system that uses natural human saliva as the nutrient source, instead of artificial media, is particularly desirable in order to support the expression of cellular and biofilm-specific properties th...
متن کاملEffect of NaCl on Pseudomonas biofilm viscosity by continuous, non-intrusive microfluidic-based approach
A method combining video imaging in parallel microchannels with a semi-empirical mathematical model provides nonintrusive, high-throughput measurements of time-varying biofilm viscosity. The approach is demonstrated for early growth Pseudomonas sp. biofilms exposed to constant flow streams of nutrient solutions with different ionic strengths. The ability to measure viscosities at early growth s...
متن کاملMonodisperse Emulsion Drop Microenvironments for Bacterial Biofilm Growth.
In this work, microfluidic technology is used to rapidly create hundreds of thousands of monodisperse double and triple emulsion drops that serve as 3D microenvironments for the containment and growth of bacterial biofilms. The size of these drops, with diameters from tens to hundreds of micrometers, makes them amenable to rapid manipulation and analysis. This is demonstrated by using microscop...
متن کاملEffect of Isolated Specific Lytic Phage against Growth and Biofilm Inhibition of Streptococcus mutans and Streptococcus sanguinis Isolated from Decayed Dental Plaque
Background and purpose: Despite advances in oral health and dental industry, tooth decay remains one of the most common oral diseases. One of the new methods to combat dental plaque, which is the main cause of caries, is using specific lytic bacteriophage. This study aimed to investigate the effect of isolated specific lytic phage against growth and biofilm inhibition of Streptococcus mutans an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 16 9 شماره
صفحات -
تاریخ انتشار 2016